Microtubule assembly and function in Chlamydomonas: inhibition of growth and flagellar regeneration by antitubulins and other drugs and isolation of resistant mutants.
نویسندگان
چکیده
The distribution of microtubules in Chlamydomonas reinhardtii suggests that they are involved in mitosis, cell and nuclear cleavage, and generation of flagella. Vinblastine, colchicine, and podophyllotoxin bind to the protein building block of microtubules (tubulin) and prevent normal assembly. Mutants resistant to these "antitubulin" drugs are candidates to have alterations in tubulin primary structure. We report the ability to inhibit growth, and flagellar regeneration after amputation, of: vinblastine, several colchicine derivatives, two water-soluble derivatives of podophyllotoxin (succinylpodophyllotoxin and epipodophyllotoxin thiuronium bromide), and other substances which may interfere with flagellar assembly or motility (isopropyl N-phenyl carbamate, 2-methoxy-5-nitrotropone, chloral hydrate, caffeine, and nickel acetate). The ability of each drug to inhibit binding of labeled colchicine or podophyllotoxin to mammalian brain tubulin was also determined. The results suggest that only in the cases of colchicine, colcemide, and epipodophyllotoxin thiruonium bromide was the toxicity to Chlamydomonas mediated by inhibition of tubulin assembly. The requirement for high concentrations of colchicine may be due to permeability barriers, since colchicine toxicity was potentiated by deoxycholate. Mutants resistant to antitubulins were isolated after treatment with methyl methanesulfonate. The results with vinblastine were equivocal. Of three mutants resistant to inhibition of growth and flagellar regeneration by colchicine, one was also cross-resistant to epipodophyllotoxin thiuronium bromide.
منابع مشابه
The bld1 mutation identifies the Chlamydomonas osm-6 homolog as a gene required for flagellar assembly
Insertional mutagenesis procedures in Chlamydomonas have facilitated the identification and characterization of dozens of genes required for the assembly and motility of flagella in Chlamydomonas. Many of these genes have been found to have homologs in animal systems. Here we describe a new gene required for flagellar assembly. Null mutants at the BLD1 locus assemble no flagella, and the flagel...
متن کاملFlagellar regeneration requires cytoplasmic microtubule depolymerization and kinesin-13.
In ciliated cells, two types of microtubules can be categorized: cytoplasmic and axonemal. It has been shown that axonemal tubulins come from a 'cytoplasmic pool' during cilia regeneration. However, the identity and regulation of this 'pool' is not understood. Previously, we have shown that Chlamydomonas kinesin-13 (CrKin13) is phosphorylated during flagellar regeneration, and required for prop...
متن کاملQuantitative analysis and modeling of katanin function in flagellar length control
Flagellar length control in Chlamydomonas reinhardtii provides a simple model system in which to investigate the general question of how cells regulate organelle size. Previous work demonstrated that Chlamydomonas cytoplasm contains a pool of flagellar precursor proteins sufficient to assemble a half-length flagellum and that assembly of full-length flagella requires synthesis of additional pre...
متن کاملTemperature-sensitive mutations affecting flagellar assembly and function in Chlamydomonas reinhardtii
A series of conditional mutants of the algal, biflagellate Chlamydomonas reinhardtii with temperature-sensitive defects in flagellar assembly and function were isolated. The genetics and phenotypes of 21 mutants displaying a rapid alteration in flagellar function upon shift from the permissive (20 degrees C) to the restrictive (32 degrees C) temperatures are described. These mutants designated ...
متن کاملStudy of Mutations in the DNA gyrase gyrA Gene of Escherichia coli
Quinolones are a large and widely consumed class of synthetic drugs. Expanded-spectrum quinolones, like ciprofloxacin are highly effective against Gram-negative bacteria, especially Escherichia coli. In E. coli the major target for quinolones is DNA gyrase. This enzyme is composed of two subunits, GyrA and GyrB encoding by gyrA and gyrB, respectively. Mutations in either of these genes cause qu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 118 1 شماره
صفحات -
تاریخ انتشار 1974